Data Analyst for Python Cheat Sheet - Complex Data Types

                      Preview                          Next                     

Data Analyst for Python Cheat Sheet - Complex Data Types


                                        Python Cheat Sheet - Complex Data Types

 


       Description

     Example

 List


 A container data type that stores a sequence of elements. Unlike strings, lists are mutable: modification possible.

 l = [1, 2, 2] 

print(len(l)) # 3

 

Adding elements

 Add elements to a list with (i) append, (ii) insert, or (iii) list concatenation. The append operation is very fast.

[1, 2, 2].append(4) # [1, 2, 2,4] 

[1, 2, 4].insert(2,2) # [1, 2, 2, 4]

[1, 2, 2] + [4] # [1, 2, 2, 4]

 

Removal 

 Removing an element can be slower.

[1, 2, 2, 4].remove(1) # [2, 2, 4]

 

Reversing 

 This reverses the order of list elements.

 [1, 2, 3].reverse() # [3, 2, 1]

 

Sorting 

 Sorts a list. The computational complexity of sorting is O(n log n) for n list elements.

 [2, 4, 2].sort() # [2, 2, 4]

 

Indexing 

 Finds the first occurence of an element in the list & returns its index. Can be slow as the whole list is traversed.

 [2, 2, 4].index(2) # index of element 4 is "0" 

[2, 2, 4].index(2,1) # index of element 2 after pos 1 is "1"

 

Stack

 Python lists can be used intuitively as stack via the two list operations append() and pop().

 stack = [3] 

stack.append(42) # [3, 42]

 stack.pop() # 42 (stack: [3])

 stack.pop() # 3 (stack: [])

 

Set 

 A set is an unordered collection of elements. Each can exist only once.

 basket = {'apple', 'eggs', 'banana', 'orange'} 

same = set(['apple', 'eggs', 'banana', 'orange'])

 

Dictionary 

 The dictionary is a useful data structure for storing (key, value) pairs.

 calories = {'apple' : 52, 'banana' : 89, 'choco' : 546}

 

Reading and writing elements


 Read and write elements by specifying the key within the brackets. Use the keys() and values() functions to access all keys and values of the dictionary.

 print(calories['apple'] < calories['choco']) # True

 calories['cappu'] = 74

print(calories['banana'] < calories['cappu']) # False

 print('apple' in calories.keys()) # True 

print(52 in calories.values()) # True

 

Dictionary Looping 

 You can loop over the (key, value) pairs of a dictionary with the items() method.

for k, v in calories.items():   

            print(k) if v > 500 else None # 'chocolate' 

 

Membership operator

 Check with the ‘in’ keyword whether the set, list, or dictionary contains an element. Set containment is faster than list containment.

 basket = {'apple', 'eggs', 'banana', 'orange'} 

print('eggs' in basket} # True

 print('mushroom' in basket} # False


 List and Set 

Comprehens ion


 List comprehension is the concise Python way to create lists. Use brackets plus an expression, followed by a for clause. Close with zero or more for or if clauses. 

Set comprehension is similar to list comprehension.

 # List comprehension

 l = [('Hi ' + x) for x in ['Alice', 'Bob', 'Pete']]

 print(l) # ['Hi Alice', 'Hi Bob', 'Hi Pete'] 

l2 = [x * y for x in range(3) for y in range(3) if x>y] 

print(l2) # [0, 0, 2] 

# Set comprehension 

squares = { x**2 for x in [0,2,4] if x < 4 } # {0, 4}

 

Previous Post Next Post

Contact Form